
40 The Delphi Magazine Issue 30

Fatal Startup Error
by Brian Long

Recently I received a question
emailed to The Delphi Clinic.

Because the answer and some
additional explanatory material
seemed to want to take up an entire
issue’s Clinic space allocation, it
seemed appropriate to split it into
a separate article (as was done
with a question about completely
customising tooltips in Issue 16).
This is one of those innocent
enough questions trying to get a
simple answer, but to try and jus-
tify the answer it gives me an
excuse to delve under the hood
and to try and explain how Delphi
does some of its primary form-
based operations. Here is the
question:

“When I build up a form, Delphi
does its usual job of adding decla-
rations for all my objects at the top
of my form’s class definition. If the
form represents a portion of a com-
plex user interface, then this form
class can end up getting very, very
large. To try and help reduce the
form unit file size I manually delete
the declarations of all the purely
decorative objects that I will never
explicitly refer to in code, such as
labels, bevels, panels and so on.
However, sometimes, when I have
been doing a spate of these dele-
tions, I then get a run-time error (an
EClassNotFound exception) as the
form is being created. The message
says: Class XXXX not found where
XXXX is one of the component
types I have been deleting refer-
ences to. Since this only happens
sometimes can you tell me the
exact circumstances that control
whether this error will show or
not?”

As is often the case, to under-
stand all about this error we need
some background information.
However to save you reading
through all that information to find
the actual answer, this time I’ll put
that first and follow it with the
explanation.

If you delete all references to any
specific type of component from a

form class, the error will be gener-
ated. On the other hand, if you
ensure you leave at least one refer-
ence to each component type used
on the form, then the form will load
up without failure at run-time.
That’s the brief version, missing
out the available workaround. Now
for the more elongated version...

A Form Is A Stream
To get an understanding of the
problem, we need to pose an
often-overlooked question. When
working in the form designer, it’s
rather well known that the IDE is
storing all the information about
which components go on the form,
and what their properties are, in a
form file. This .DFM file is an object
stream, the form and all the com-
ponents on it are streamed out to
the form file. An object stream file
is a binary file that contains
enough information for an appro-
priate executable file to recon-
struct all the constituent objects.
The generally ignored question is
“How does a Delphi executable
turn a DFM file into a real form
instance?” This is another of those
apparently innocent questions
that requires a lot of digging to find
the real mechanics at work. So let’s
start exercising our shovels.

As was explained in my article
File Handling Part 5: Streaming
Components back in Issue 10 of The
Delphi Magazine, an object stream
contains, for each streamed
object, the name of the component
class (as a string), followed by the
name and value of each property
that has a non-default value. There
is no code stored in an object
stream.

The whole streaming process
relies on the code that implements
an object already residing in the
executable file (or, in the case of
Delphi 3, possibly in packages used
by the executable file), which
explains the use of the phrase
“enough information” a couple of
paragraphs above.

When a component is added
onto a form, Delphi does two
things to the form unit. Firstly (and
instantly) it adds an object
reference to the form class through
which you can refer to the run-time
component. The online help refers
to such object reference declara-
tions as instance variables. Sec-
ondly, when you next compile or
save the unit, it may update the
uses clause to ensure its new
object reference declaration
compiles without error.

Bear in mind that Delphi has a
smart linker. This means that if you
have a whole bunch of units in one
of your uses clauses, all the code
from all these units does not
automatically go into your final
executable. Instead, only code that
is explicitly or implicitly referred
to (as well as code for initializa-
tion and finalization sections) is
linked in.

So, take the case where you put a
button on a form. Delphi inserts an
instance variable Button1 of type
TButton and when you next
compile, it adds the StdCtrls unit
into your uses clause. Because of
the reference to TButton in the
instance variable declaration, the
TButton code (or a fair portion of it)
will be included in the final binary
file. If you delete that declaration,
then there is a possibility that all
the TButton code will be smart-
linked out of the program. That
would not be helpful as then the
TButton object could not be manu-
factured at run-time. Granted,
other forms may well have buttons
on and so might pull the code in,
but “might” is not good enough.
One form is represented by a form
unit, which can be used in any
project you like. Just because all
the code required for a form’s suc-
cessful operation is coincidentally
pulled into one final compiled proj-
ect by the code in other units does
not mean this will always be the
case in all projects, so this is not an
adequate situation.



February 1998 The Delphi Magazine 41

So one issue related to this sub-
ject is getting the code for
streamed objects into the EXE. The
other issue is how the streaming
system turns the string that identi-
fies the type into an actual
instance. There is no inherent way
to turn a string into a class or
object and so Delphi and the VCL
has to do some work to allow a
translation to be made.

Delphi inserts all the instance
variables as fields in the unnamed
section (also known as the default
section) of the form class. This
default section has the same
semantic implications as the pub-
lished section, so all these fields
are published.

RTTI And Other
Internal Tables
When properties are published by
a component (and a form is an
example of a component), the
compiler generates RTTI (run-time
type information) for their types.
This is so the object inspector can
analyse, edit and store their values
in the form file, and the streaming
system can set their values when
loading a form.

But all these instance variables
are not properties. For other pub-
lished items, typically found in
forms and data modules, which
include data fields and methods (ie
component references and event
handlers) the compiler performs a
different task.

The address and name of pub-
lished methods are stored in a
method table (used by the class
functions TObject.MethodAddress
and TObject.MethodName). The
names and relative addresses of
published data fields are stored in
a field table (used by the TObject.
FieldAddress function) and a list of
class references for their types is
stored in a field class table. All
these tables (like virtual method
tables, dynamic method tables
and the type information table) are
implemented on a per-class basis.

When a form gets created, its
constructor attempts to initialise
all the components that sit upon it
by loading the form file stream
from the executable’s resource
table. This is done with the Classes

unit routine ReadComponentRes.
Assuming the resource (named
the same as the form class) is
found, this routine then reads
through the stream creating
objects and setting properties.

When it reads a component
class name, it attempts to turn the
string into a class reference (via
which it can call the constructor)
by using the form’s field class
table. It loops through each class
reference in the table, calling the
class function ClassName and com-
paring the result with the read
string. If it finds a match, it calls the
constructor to make a new
instance and then reads and sets
all the appropriate properties.

The job of assigning this newly
created component to the relevant
form data field is left to both the
component and the form in combi-
nation. When the component is
constructed and passed an Owner
parameter, it calls the target Own-
er’s InsertComponent method.
InsertComponent will try to locate a
data field with a name that
matches the value of the compo-
nent’s Name property (using
FieldAddress). If it finds one, it sets
its value accordingly.

So to recap, the compiler builds
a field class table for each form (as
well as all other components if
they have published data fields as
opposed to properties) and the
streaming system relies on this to
translate from a string into a class
reference.

As you have found, if you delete
all references to a particular com-
ponent type from a form class then
that type will not be found in the
form’s field class table and so you
get the Class not found exception.
So leaving at least one reference to
the component type in the form’s
default section would deal with the
situation.

An Alternative Remedy
But there is another way. This
other way caters for situations
that component writers might
face. If someone is writing a com-
ponent (say, called TComposite)
that is made out of several con-
stituent components (say, a TLabel
and a TEdit), it might be desirable

for the label and edit to be stored
in and read from the form file, but
not available in the Object Inspec-
tor (and so with no declarations in
the form class). So when a TCompos-
ite component is placed on a form,
there will only be one reference
added to the form class and that
will be for a TComposite object. This
means there is a potential for the
field class table to have no record
of TLabel and TEdit.

To cater this possibility, Delphi
supports a global class list, as well
as each of these form-local lists. To
get a class onto the global list, call
RegisterClass, passing in the class
reference; for example, Register-
Class(TButton). To get multiple
classes into the global list, use
RegisterClasses; for instance, Reg-
isterClasses([TLabel, TEdit]).
These calls will usually be made in
an appropriate unit’s initialisation
section to ensure the classes are in
the global list before any streams
are read. If the stream reading
mechanics cannot find a class in a
field class table, the global class
list will be checked using the Find-
Class routine. If FindClass fails to
locate the target class, it generates
an EClassNotFound exception
(which is where your error is
coming from). The online help for
RegisterClass summarises this lot
with:

“Call RegisterClass to register a
class with the streaming system.
Form classes and component
classes that are referenced in a
form declaration (instance vari-
ables) are automatically regis-
tered. Any other classes used by
an application must be explicitly
registered by calling Register-
Class. When classes are regis-
tered, the class type can be
obtained from the class name by
calling the FindClass or GetClass
function. If a class is not
registered, GetClass returns Nil
when passed the class name, while
FindClass raises an exception.”

Historically, during the develop-
ment of the original Delphi, there
were no field class tables manu-
factured. Instead, for each form,
Delphi maintained a unit
initialisation section that con-
tained a call to RegisterClasses.



42 The Delphi Magazine Issue 30

Each time you added a new compo-
nent onto the form, the component
type was added into the open
array passed to RegisterClasses.
Clearly Borland’s R&D decided
this was too unsightly and went for
a behind the scenes approach
instead (with no form unit source
code generated, it becomes much
easier on the eye). Incidentally,
this pre-release behaviour
explains the otherwise misleading
error message Error in module
Unit1: Call to RegisterClasses is
missing or incorrect which occurs if
you damage the final end of a
Delphi 1 form unit (Delphi 2 fixed
this oversight).

Of course by ensuring the form
unit contains the class name of all
components, either in the form
class definition, or in a Register-
Classes statement, we can rest
assured that the code for the com-
ponent class will definitely not be
smart-linked out. So all bases are
covered.

Getting Your
Hands Slightly Dirty?
The business of reading a form
resource for the purpose of creat-
ing all the constituent components
and setting the properties can be
analysed by examining the source
code in the VCL. You can follow the
logic through in the Classes unit
source if you have it. ReadComponen-
tRes (or in the case of 32-bit Delphi
the internal version, InternalRead-
ComponentRes) creates some type of
stream to map onto the resource
(THandleStream in 16-bit, TRe-
sourceStream in 32-bit). The
stream’s ReadComponent method is
called with the form reference
passed as a parameter.
TStream.ReadComponent creates a
TReader and calls the ReadRoot-
Component method, again passing
the form reference.

The TReader then does some ini-
tialisation stuff and calls the forms
ReadState method. The form inher-
its a ReadState method from TCom-
ponent, this calls the TReader’s
ReadData method, which then calls
its ReadDataInner method. Are you
keeping up?

TReader.ReadDataInner reads
and sets all the form properties

and then repeatedly calls
TReader.ReadComponent, passing in
nil. ReadComponent reads in the
component class name string and
name and then calls the nested
CreateComponent procedure. Cre-
ateComponent calls FindFieldClass
to translate the class string into a
class reference. FindFieldClass
searches the form’s field class
table, and if necessary calls Find-
Class. If a class reference is found,
its Create method is called to con-
struct an instance of the class (oth-
erwise FindClass generates an
exception).

Virtual Constructors
It is because this requirement of a
generic approach of calling the
constructor through some
returned class reference that
explains why component con-
structors must be polymorphic.
The FindFieldClass method
returns a TPersistentClass
(declared as class of TPersistent).
This is typecast into a TComponent-
Class (declared as class of TCompo-
nent) and through this class
reference the Create constructor is
called. Of course, the supplied
class reference may actually be a
TButton reference or a TEdit refer-
ence or some other reference.
Thanks to the polymorphic
requirement of class constructors,
the right one is sure to be called.

If you could think of some
requirement for gaining access to
the local field class table, or indeed
the field table or method table, you
are free to do so. It is not necessar-
ily that obvious how to write code
to talk to these compiler generated
structures but it is certainly possi-
ble. The TblTest.Dpr project on
the disk does exactly this. It has a
load of code in a unit TblInfo that
gives access to the all three of
these tables and, where appropri-
ate, navigate from one entry to the
next. The project uses these rou-
tines to list out all the published
fields and methods of the main
form in a couple of listboxes upon
form creation. Figure 1 shows the
output and some verification that
the displayed information is cor-
rect. Remember that the TObject
methods FieldAddress, MethodAd-
dress and MethodName make use of
these tables in order to work.

The code in the unit is a little
unpleasant in places, but you will
be pleased to hear that I avoided
using assembler (which the run-
time library and VCL code chooses
to use). Not only is there a lot of
pointer manipulation going on but
there is plenty of conditional
compilation to ensure everything
works in Delphi 1, 2 and 3. I won’t
bother listing any code here in the
magazine pages, it is not that
interesting. Suffice it to say that if

➤ Figure 1



February 1998 The Delphi Magazine 43

you are interested you will need to
have a look at the files supplied on
the disk.

Last Words
Some final comments on the ques-
tioner’s approach to reducing the
size of form units. He was manually
deleting object references from
the form unit. This leaves the
object in existence with all its
properties intact, including the
Name property. If you are never
going to refer to these compo-
nents, then leaving all their Name
property values unchanged will
cause a certain amount of
unwanted information to be left in
the form file.

As an alternative, you can set the
Name property to an empty string in
the Object Inspector, which (when
you press Enter or click on some-
thing else) will automatically
remove the object reference from
the editor. The IDE normally keeps
the object reference identifier and
the Name property in sync: if you
change the property, the identifier
gets updated. Changing the Name to
an empty string forces the IDE to
delete the object reference. The
Name string will now take no space
in the form file, and therefore the
executable will be that much
smaller.

If you delete the object reference
then the component will still have
its original name, although there is
no object reference form data field
through which you can talk to it.
But if you found you needed to,
you could use the form’s Find-
Component method, which takes a
name string and attempts to locate
a component that it owns whose
Name property matches. For
example:

(FindComponent(‘Label1’) as

TLabel).Caption := ‘Found it’;

If you delete the Name property
value, then this will not work.

Also, if the Name property
remains set, the Object Inspector
is happy to continue making event
handlers for the component’s
events when you double click next
to the event (or select the event
and press Ctrl-Enter). It

auto-names the handlers, so an
OnClick event handler for a TLabel
component Label1 will be
Label1Click.

With the Name property blanked
out, the auto-naming process fails
somewhat and the Object Inspec-
tor complains: Cannot create a
default method name for an
unnamed component. You can cir-
cumvent this problem by simply
making up your own event handler
name and typing it next to the
event on the Object Inspector and
pressing Enter.

Of course in an event handler for
an unnamed component, you can
reference the component using
the Sender parameter (which is
passed to practically all event
handlers and represents the
component that triggered the
event):

procedure TForm1.UnnamedLabelClick(

Sender: TObject);

begin

(Sender as TLabel).Caption :=

‘It was clicked’;

end;

So to summarise what has gone on
over the last few pages, the
program will run successfully if
you leave at least one reference to
each component type in each form
or alternatively make use of Regis-
terClasses. En route we have
examined the underlying mecha-
nisms employed by the streaming
system to take a stream file linked
into the program as a resource and
turn it into a bunch of real objects.
Finally, for form unit size reduction
we have seen one or two points
that might dictate whether you
manually delete component
references from the form class or
instead set the component’s Name
property to an empty string.

Brian Long is a UK-based free-
lance Delphi and C++ Builder
consultant and trainer. He is
available for bookings and can
be contacted by email at
brian@blong.com
Copyright © 1998 Brian Long
All rights reserved


	A Form Is A Stream
	RTTI And Other Internal Tables
	An Alternative Remedy
	Getting Your Hands Slightly Dirty?
	Virtual Constructors
	Last Words

